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Abstract

Sensors require physical interaction with the sensed phenomena
and are subject to a number of noise factors. Moreover, sensor data is
highly correlated across a subset of sensors in the vicinity of a stimu-
lus. To get reliable performance from individually less reliable sensors,
time-critical collaborative inference in the vicinity of a stimulus is nec-
essary to circumvent limitations of sensing, communications, power,
and equipment faults. Dynamic space-time clustering (DSTC) is the
ability of a sensor network to support such collaborative inferencing in
the presence of physical stimuli. In this paper we present the DSTC
algorithm for tracking events and targets by deploying a sensor field
in the surveillance region. The computationally efficient DSTC algo-
rithm leverages its performance by facilitating collaboration between
sensors by way of sensor data fusion. To conserve network band-
width required for sensor data fusion, we use a probabilistic finite
state-machine model based on the symbolic dynamics theory to ex-
tract useful information from time series data that represents the raw
sensor data. Such a model is capable of extracting maximum useful
information in the form a probabilistic finite state machine. This pa-
per describes protocols required to carry out DSTC and to adaptively
reconfigure the network, in-situ, to capture the statistical character-
istics of emerging change in the information dynamics. Building on
this framework, we present an urban area application that requires
adaptive sensor networks to dynamically cluster sensing, processing
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and communications resources in space-time neighborhoods of emer-
gent hotspots for progressively fine grained sampling and prediction,
and collaborate with other dynamic clusters for event tracking.

1 Introduction

A sensor network operates on an infrastructure of sensing, computation, and
communication, through which it perceives the evolution of physical dynamic
processes in its environment. Sensors require physical interaction with the
sensed phenomena and are subject to a number of noise factors. Sensor data
gathered by a group of sensors in the vicinity of a phenomenon therefore ex-
hibits high mutual correlation. Since individual sensors tend to have limited
capability in terms of quality of data gathered by individual sensors, higher
situation understanding may be obtained by resorting to time-critical collab-
oration between networked sensors. Information fusion is an effective way
to support such collaboration [1, 2]. Sensor fusion over a group of sensors in
the vicinity of a stimulus can effectively circumvent limitations of sensing,
communications and power limitation of individual sensors. Aggregation of
data, information or both from multiple sensors has been shown to be effec-
tive in building better intelligent systems [3] as shown by by Wong et al. [4]
for improving the performance of 3-D face recognition using multiple sensors.
Sensor fusion need not be limited to stationary sensors. Qi et al. [5] extend
the idea of sensor data fusion to sensor networks utilizing mobile agents that
can migrate to different sensors lying in the vicinity of a phenomenon being
sensed to collect the sensed data. To support sensor data fusion, a network
of static or mobile sensors has to address the following additional problems:

1. The sensors in the vicinity of a stimulus generate more data than the
communication network can transport to a fusion center.

2. Communication paths, in addition to capacity limitations, are often
not reliable due to limited transmitter power, queue overflows and in-
terference .

3. Relative significance of data generated at a particular location is highly
variable depending on the current tactical situation.

To deal with these problems, we extend the basic concept of multi-layer sen-
sor fusion [2] by making the sensor network adaptive to changes in the sensed
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phenomenon. Consider the problem of tracking a moving target by a sen-
sor network. As the target moves in space and time, at different space-time
epochs, a sufficient number of sensors need to be positioned in the vicinity
of the path being traversed by the target to provide data/information to be
fused. We refer to such dynamic changes caused in the sensor network topol-
ogy and the associated data fusion operations as dynamic space time cluster-
ing (DSTC). The concept of DSTC in a large sensor network offers several
benefits, such as, reduced network bandwidth requirements, power manage-
ment, distributed processing and data fusion. Additionally, by dynamically
optimizing the network structure, DSTC can improve network utilization and
life time. In the context of the target tracking scenario, besides optimally
selecting a cluster head, network optimization may entail optimizing cluster
size and controlling the internal state of a sensor node. For example, if there
are too many sensor nodes in a cluster, to reduce intra cluster traffic the
cluster head may force some of these nodes to leave the cluster or instruct
some nodes to hibernate, instruct some nodes to act only as routers, etc.
Conversely, too few cluster nodes in a cluster may not deliver acceptable
quality of fusion, requiring cluster head to request some nearby nodes to join
the cluster. Much of the past research on sensor networks has either focussed
solely on the networking issues or solely the fusion issues. In real scenarios
(such as the one outlined above), these problems have to be dealt with to-
gether. This paper deals with developing a more holistic approach to sensor
networking by integrating information, networking and fusion issues in an
integrated framework. For ensuring brevity in communicating our ideas, we
deal with a specific sensor network scenario that involves tracking a target
moving through a field of randomly placed sensors. A subset of sensors close
to the current position of the target form a cluster of resource constrained
sensors. The topological attributes of a cluster keep changing dynamically to
ensure best quality of fusion. We start by identifying a subset of sensors that
appear to provide correlated information. Such an operation would require
this subset of sensors to exchange large volumes of sensor data, thus over-
loading a resource limited sensor network. To minimize network overloading,
our approach proposes to compress the raw sensor data by extracting seman-
tic information via a probabilistic finite state model (PFSM) of the sensor
data. This avoids having to send large volumes of raw sensor data, thus
conserving network bandwidth [6]. The challenge then is to work with the
PFSM model of the sensor data for identifying objects of interests, fusing
information provided by multiple sensors, establishing relationships between
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the objects of interest, etc. Computational sophistication required to gen-
erate and operate on the PFSM models provide us with a strong motive to
split the problem at hand into two separate but interacting logical domains,
namely, the Information Space (IS) and the Network Control Space (NCS),
as shown in Fig. 1. The IS is responsible for dealing with all issues re-
lated to sensor data representation and associated information processing.
In contrast, the NCS will be responsible for all networking issues, such as,
protocols, network topology, information transportation, etc. In large sensor

Figure 1: Solution Concept

fields used for persistent surveillance of urban areas for potential terrorist ac-
tivities or undersea mine-hunting for ensuring safety of commercial shipping
traffic, the sensor nodes are sparsely placed. Moreover, to conserve battery
power, sensors are usually placed in the sleep mode until a particular stimu-
lus in the operational environment alerts them to potential events of interest.
Characterization of dynamic behavior of environmental stimuli under oper-
ational constraints requires tactful capture of both the coarse and the fine
grained system dynamics. Such dynamics is crucial for ensuring persistent
collaboration between distributed sensors. Human oversight and endurance
for long duration sensor collaboration is neither possible nor practical in
an amorphous and unpredictable networking environment. A large resource
constrained sensor network must, therefore, dynamically switch from coarse
to fine grained topologies in the vicinity of a stimulus in order to support
progressively segmented analysis to localize emerging hotspots and events of
interest.
This paper utilizes an analytical model of the abstract Information Space
generated by asynchronous data streams emanating from the sensors [7].
The model enables us to compute the information fusion requirements in the
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vicinity of a stimulus in terms of the cluster characteristics that will support
the collaborative monitoring of the emerging hotspot. This paper formulates
the DSTC protocol for reconfiguring the network topology as a function of
changes in the information dynamics due to stimuli for the dynamical sys-
tem served by the network. Thus, it also provides flexible configurations
to accommodate uncontrollable fluctuations of the exogenous variables that
generate stimuli to the sensors. The remainder of the paper is organized into
4 additional sections. In Sec. 2, we provide a brief description of the PFSM
data modeling approach. Sec. 3, describes the DSTC technique and associ-
ated protocols used to derive a fusion driven cluster. In Sec. 4, we compare
the performance of the DSTC technique with static clustering (i.e., when the
sensor nodes are not mobile) and centralized clustering. Sec. 5 provides the
concluding remarks and the future work being carried out.

2 PFSM Sensor Data Model

Sensors networks are typically constructed with low bandwidth wireless links.
While individual sensor are resource limited, networking of sensors allows re-
source limited sensors to form a powerful collaborative system. The collabo-
ration takes the form of sensor data fusion, which in turn requires all nodes
in a cluster to exchange sensed data with each other, leading to large network
bandwidth consumption. To minimize network bandwidth consumption, it
is therefore imperative to avoid communicating redundant data. In this sec-
tion, we describe a technique that models the raw sensor data as PFSM [7].
The basic concept used in deriving the PFSM model of a time-series data set
is based upon the fundamental principles of finite state automata, pattern
recognition, and information theory. It relies on the following two simplifying
assumptions:

• The behavior of the time-series data is quasi-stationary at the fast time
scale of process dynamics;

• Observable non-stationary behavior of the dynamical system can be
captured with the help of parametric or nonparametric changes that
evolve at a slow-time scale.

The main steps involved in arriving at such a model as given in [6] are:
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• Symbolic dynamic filtering (SDF) to quantize the data block into a set
of symbols {σ1, ..σk} ∈ S

• Probability distribution of the occurrence of different symbols. Simple
histogram based methods have been been shown to be quite effective
in estimating these distribution.

• Derivation of the underlying hidden Markov model (HMM) using the
D-Markov machine construction. The resulting D-Markov machine is
the final PFSM model of a data block. Different data blocks of large
time-series give a set slowly evolving set of such PFSM.

Complete algorithm used to obtain the PFSM model is beyond the scope of
this paper and the readers can refer to the details in [6]. Such a PFSM model
leads to a significant removal of redundant and predictable data present in
a sensor data stream, thus compressing the sensor data. The ensuing data
compression results in reducing the demand for network bandwidth. The
overall problem of sensor data compression followed by sensor data fusion
and network adaptation for efficient event tracking using the non-stationary
statistics of the information dynamics to drive in-situ changes to the network
space is depicted in (Fig. 1).

3 Fusion Driven Dynamic Clustering

To enhance quality of data fusion and resilience, a distributed sensor network
needs to be adaptively reconfigured, where the network topology is dynam-
ically updated based on the spatial-temporal information derived from the
ensemble of sensor data. Clearly, it is not practical for all sensor nodes to
exchange large volumes of raw sensor data with each other. To reduce the
network traffic, we need to:

1. Choose a subset of sensor nodes that are capable of providing high
quality sensor data. Such a subset of sensors is likely to be a cluster of
nodes in the vicinity of the target or the phenomenon being sensed.

2. Extract only the useful information from the raw sensor data while dis-
carding predictable information, thereby compressing the sensor data.
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There are numerous data compression techniques available in the literature.
In our previous works, we have suggested the discrete event dynamic sys-
tem representation [7, 8] of a sensor data time series. Such a representation
results in modeling sensor data as a PFSM. Furthermore, a fusion process
is generally structured as a multi-layer process [2] with each higher layer
delivering a higher level of abstraction. It has been proposed in [8] that
multi-layered fusion can also be implemented by organizing sensors into a
hierarchy of networking structures. This hierarchy starts with individual
sensor nodes, then clusters of sensors and finally the inter-network of clus-
ters that spans the entire sensor network. The PFSM modeling approach has
the additional advantage that when applied iteratively for each fusion layer,
it leads to a hybrid multilayered interacting probabilistic automata (IPA) [9]
for each fusion layer. Continuously varying dynamics capture the physical
processes at the lowest level of abstraction while discrete event models inte-
grate sensing, computation and communication events in a formal language
representation [9]. A formal language measure was also developed for mea-
suring operational deviations from specified behavioral representations [10].
The PFSM and IPA data models lead to an appreciable reduction in network
traffic. To further minimize the network traffic, we propose to create an off-
line library of causal patterns consisting of PFSMs and IPAs. This library
of patterns is initially created during the learning phase and is continuously
updated during the operational phase by appending any new observed pat-
terns. After converting the observed raw sensor data block into its PFSM
model, we compare the generated pattern with the members of the pattern
library using the language distance measure proposed in [9] and choose the
pattern giving minimum distance dmin from a reference pattern. If the con-
dition cmin defined by the inequality dmin < dt is true, then the sensor is
selected as a potential candidate for being a member of cluster. We refer to
this phase as the pre-clustering phase during which potential cluster mem-
bers are identified. This is followed by the actual cluster formation phase,
wherein these members select a cluster head that acts as proxy for the entire
cluster of nodes. We have developed two heuristic algorithms for forming a
cluster. The first algorithm follows greedy clustering strategy and has the
advantage of being fast and requires less computing and communication. In
contrast, the second algorithm is referred to as patient clustering that carries
out a more detailed analysis of the distance measures to decide on a cluster
structure and the cluster head. These two algorithms are described in the
two subsections below.
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3.1 Greedy Clustering Algorithm

The greedy clustering algorithm works by letting the first sensor node ni

that meets the condition cmin, as defined earlier in the previous paragraph,
announces itself as the cluster head, along with the pattern pj that it has
observed and the lifetime of this cluster. During the life time of this cluster,
the cluster head periodically broadcasts this information. Subsequently, if
any other node nk, k 6= i sees the same data pattern pj, it informs the cluster
head of its intention to join the cluster. When the cluster head acknowledges
this request from nk, then nk also becomes a member of this cluster. Prior
to the expiry of the lifetime of this cluster, the cluster head has the option
of renewing its designation as a cluster head. If the cluster head does not
broadcast it renewal message, then at the end of cluster life time, the cluster
is automatically disbanded. This algorithm may be summarized as below:

start:
forall sensor nodes n[k], k=1,..,N do

collect m samples;
compute PFSM pattern p[k];
clusterhead = 0;
for j = 1,..,|pattern_lib|

if(distance(p[k], plib[j]) < threshold)
clusterhead = j;

endif
if (clusterhead != 0)

break;
endfor;

endforall;
if (clusterhead == 0)

goto start;
else

broadcast (clusterhead, lifetime)
endif

A1: Greedy Clustering Algorithm

The working of this clustering algorithm is demonstrated via the target
tracking example in Sec. 3.3. The greedy clustering algorithm has the ad-
vantage of being simple and efficient as far as cluster formation is concerned.
However, it suffers from a serious drawback in that a greedily formed cluster
head may be based on poor quality sensed information. It is quite plausible
that over a small window of time, another sensor may have been able to
observe the phenomenon more effectively. These limitations are addressed
by the clustering algorithm described in the next section.
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3.2 Patient Clustering Algorithm

In contrast to the greedy algorithm, the patient algorithm does not opt to
choose the first observer of a phenomenon as the cluster head. Instead,
each node periodically broadcasts a small number of data patterns it has
observed (provided these data patterns meet the clustering condition cmin)
along with their distance measure as suggested in [4] in the context of facial
pattern recognition. The resulting fusion process ensures that the cluster
members consult amongst each other to arrive at a consensus based election
of the cluster head. The consensus criterion used to elect the cluster head
is based on the distance measure associated with the PFSM models of the
phenomenon being observed by the cluster members as summarized in the
algorithm below:

start:
forall sensor nodes n[k], k=1,..,N do

initialize <p[k]=NULL>
collect m samples;
compute acceptable PFSM patterns <p[k], d[k]>;
clusterhead = 0;
msgQ = NULL;
if(p[k] != NULL) broadcast <p[k], d[k]> endif;
forall received broadcasts

append(d[k], msgQ);
end forall;
min = argmin(d[k]);
clusterhead = min;

endforall;
if (clusterhead == 0)

goto start;
else

broadcast (clusterhead, lifetime)
endif

A2: Patient Clustering Algorithm

It is important that a cluster head once agreed upon by the cluster mem-
bers fulfills its responsibility as a cluster head only for a finite time1. After
the expiry of the cluster head life time, a new cluster head should be elected.
This ensures that the processing load associated with a cluster head is shared
between a number of sensors. Otherwise, a single sensor acting as cluster head

1this finite time is a design parameter that depends on the target dynamics and the
battery power constraints
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for a prolonged interval of time may end up exhausting its power source to
the detriment of the entire cluster. On the flip side, time sharing cluster head
duties introduces overheads by way of protocol overhead entailed in electing
a new cluster head periodically.

3.3 Event Tracking using DSTC

Dynamic Space-time Clustering (DSTC) is a distributed processing algorithm
based on the closest point of approach (CPA) [11] of the target to each of the
sensors in the network [12–15]. DSTC is based on the concepts of a space-time
neighborhood, a dynamic window, and an event. A space-time neighborhood
centered N(x̄0, t0) around the space-time point (x̄0, t0) at which the event is
assumed to have occurred is given by a set of space-time points,

N(x̄0, t0) = {(x̄, t) | |x̄− x̄0| ≤ ∆x, |t− t0| ≤ ∆t}

The quantities ∆x and ∆t define the size of the neighborhood in space and
time, respectively. The space-time window contains all the data that was
sensed within a distance ∆x around x̄0 within the time interval ∆t around
time t0. This allows us to define a dynamic window around a moving point,
ḡ(t) , as

w(t) = {(x, t) | |x̄0 − ḡ(t0)| ≤ ∆x, |t− t0| ≤ ∆t}

Ideally, if ḡ(t) was the known trajectory followed by the event, we would
analyze time-series data or its PFSM model provided by a subset of sensors
in the window, Nc = w(te) to determine information about the event at
time te. In reality though, the event trajectory is not known. It is, in fact,
what we want the sensor network to estimate. We therefore look at the
closest point of approach (CPA) events that occur within a single space-time
neighborhood. A CPA event eij is defined as being associated with the event
i (i.e., the PFSM model of the ith sensor’s time-series data has had a closest
match with a stored PFSM pattern) at the CPA time tj. The space-time
coordinates of the event are (x̄i(tj), tj) where x̄i(tj) is the trajectory of event
i. A subset of sensor Si nodes that are capable of observing the event i
effectively within a given space-time window form a cluster. The subset Si

is computed dynamically, based on the PFSM distance criterion described
in [7]. The cluster head is selected using either the greedy or the patient
clustering algorithm as described in previous subsection. In either case, the
cluster head is responsible for computing the location of the event. In the
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case of the greedy algorithm, the cluster head is responsible for estimating
the spatial and temporal coordinates of an event as explained below. Each
sensor within a cluster estimates the coordinates of the event with a certain
degree of confidence. This level of confidence is given by the PFSM distance
measure [7] between the PFSM patterns stored in a sensor’s pattern library
and the observed pattern computed by each sensor within a cluster. The
occurrence of the CPA at each sensor is established based on when this
distance measure attains minimum value [15]. Assume that a cluster of
sensor node {n1, n2, . . . , nk} has been formed. Without loss of generality,
let us assume that n1 is the cluster head. The associated minimum PFSM
distance measure set is given by {d1, d2, . . . , dk}. This implies that the event
coordinates reported by the sensor ni, i = 1, . . . , k lies within an uncertainty
region given by a circle with radius di as shown in Fig. 2. Consequently,
the coordinates of the event based on the fusion of estimates reported by all
the cluster members will be given by the intersection of these k uncertainty
circles. In the literature, such intersection problems have been shown to
belong to the Maximal Covering Location Problem class and this class of
problems has been shown to be NP-complete [16, 17]. It is therefore not
feasible to optimally determine the location of an event or target, based
on circular uncertainty region associated with each of the cluster’s sensors.
This is more so for sensor nodes that are characterized by having limited
computing and communication resources. Keeping these limitations in mind,
the cluster head uses a very simple heuristic for fusing together the estimates
reported by various cluster members. Our main design goal for designing a

Figure 2: Location Estimate Fusion
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heuristic algorithm has been the simplicity of the algorithm. Using extensive
Matlab simulations, we decided to use linear weighted average heuristic for
fusing individual estimates at the cluster head. Let si denote the cartesian
coordinates of the location of the ith sensor and as before, let di denote the
distance measure of the PFSM pattern from a standard library pattern at
this node. The spatial and temporal coordinates se and te of the the observed
event are then computed as the weighted average of the individual estimates.
The weights are taken to be the inverse of the distance measure that acts as
a performance measure of an estimate computed by a particular sensor.

se =
d−1

1 s1 + d−1
2 s2 + . . . + d−1

k sk

d−1
1 + d−1

2 + . . . + d−1
k

(1)

te =
d−1

1 t1 + d−1
2 t2 + . . . + d−1

k tk

d−1
1 + d−1

2 + . . . + d−1
k

(2)

here, ti represents the time of occurrence of the CPA event at the ith sensor.
After forming a cluster and establishment of the cluster head (using protocols
A1 or A2 defined earlier in Secs. 3.1 and 3.2, respectively) each member of
the cluster sends its estimates si’s and ti’s to the cluster head that computes
se and te. Fig. 3 shows the generation of an event track from the estimated
position and velocity of the event as it moves through a sensor field. Our

Figure 3: DSTC for Event Tracking

experimental results show that connectionless and best effort User Datagram
Protcol (UDP) communication from each cluster member to the cluster head
has acceptable reliability. Compared to connection oriented and reliable TCP
connection, UDP has two limitations, 1) it is less reliable, and 2) it does not
offer in-sequence delivery. However, UDP incurs substantially less protocol
overhead as compared to the TCP, thus saving precious network bandwidth.
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For the problem at hand, both these drawbacks are not very serious. We are
able to alleviate the in-sequence delivery problem by packing both si and ti
into a single UDP datagram payload at the ith sensor node. Moreover, fusion
of individual estimates as given by (1) and (2) has inherent redundancy.
Consequently, lack of reliability of UDP communication does not cause a
significant drop in performance while computing the fused estimates (i.e., for
reasonably large cluster, failure of a small fraction of sensors to successfully
send their estimates to the cluster head does not cause a serious drop in
performance). As explained earlier in the clustering protocols, a cluster has a
finite and predefined life time, unless this lifetime is extended by the cluster
head. Prior to the cluster being disbanded, the cluster head periodically
broadcasts estimated spatial and temporal coordinates se and te, respectively
for use by the next cluster. These broadcasts are terminated either after some
fixed time or after the next cluster head informs the previous cluster head to
abort its broadcast. These broadcasts ensure that the sensor network is able
to track a target for a long time without long interruptions.

3.4 Network Reconfiguration

To respond to constantly changing sensed environment and the network state,
the network structure needs to be constantly reconfigured to adapt to such
changes for ensuring acceptable quality of sensor data fusion. To affect adap-
tation and control, we use a formal control model in which the NCS is pri-
marily treated as the plant to be controlled and the IS as the controller or
the supervisor. There are instances when the NCS also acts as a controller
for itself. Different protocol layers in a network protocol stack have their
own control plane. Examples of such autonomous control situations are, the
Transmission Control Protocol (TCP) layer controlling its congestion win-
dow and retransmission timer, a battery powered wireless node switching
off its routing (forwarding) functionality to conserve power and bandwidth,
etc. While such autonomous control is important, fortunately there is a rich
body of research material dealing with the autonomous control issues that
can be applied to our situation. Consequently, our focus will be on exercis-
ing external control on a sensor network to enhance the quality of fusion,
using one of the available control algorithms. In the proposed sensor net-
work architecture, since the IS is primarily responsible for the sensor data
fusion operation, we seek to arrive at a control structure in which IS makes
control decisions. These control decisions are used to reconfigure the net-
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work structure consisting of network topology, link rates, MAC layer backoff
timer, radio transmission power, node mobility, prioritization of the traffic,
etc. Such reconfiguration needs to be done in a manner that preserves the
statistical characteristics (predictability) of the ensemble of original sensor
data at each level of fusion (Fig. 4) as suggested in [8]. Since our primary
focus is on sensor networks, we do not intend to go deeply into the control
algorithm for controlling large networks. Instead, our discussion will be lim-
ited to describing the network controller architecture. We treat the control
algorithm as a black box that generates control messages, such as, transmit
power on/off, change link data rate, move sensor(∆x, ∆y), adjust back-off
timer by ∆t , etc. It should be designed to allow changing network param-
eters reactively in response to the sensed environment, the present network
state and the current quality of fusion. The network controller should re-
configure a sensor network’s topology and operation in a manner that the
fusion quality is enhanced. In the proposed control architecture shown in
Fig. 5, the controller logically resides in the IS of the CH of a cluster, while
current and future cluster members act as plant(s) to be controlled. Sensor
data quality and consequent fusion results computed by the IS are used as
inputs by the control algorithm. A sample mapping of the data data fusion
results to appropriate control messages is shown below:

Sensor Data/Fusion Quality Control Message
Node 4, SNR=-6dbm Node 4: Increase battery power 2dbm
Node 3, SNR=-20dbm Node 3: Power off
Node 7 Node 7: Join cluster ID = 23
... ...

Since IS is responsible for all sensor data & information related functions, as
mentioned previously, the CH’s IS is also responsible for making information
driven control decisions. A control decision is sent to the CH’s NS via the
InfoNet to be delivered to the target node(s). The sensor network delivers
control messages to the NS of the target node(s) identified in the control mes-
sage and each node implements the control decision. Sensor node executing
a control function sends its response back to the CH.
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Figure 4: Hierarchical Network Control

4 Comparative Analysis and Results

To validate the effectiveness of the proposed DSTC techniques, we consider
the problem of tracking a target passing through a network of sensors. We
evaluate the relative performance of three different clustering techniques us-
ing the Matlab simulation codes for these three techniques,
CC Tracking: Centralized Tracking is a form of Static Cluster Tracking
where there is only one Static Cluster Head to which all the sensor nodes send
their CPA’s, and track estimation is performed by signal strength weighted
linear curve fitting of the reported CPA positions, constantly updated as new
CPA’s arrive.
DSC Tracking: Static Cluster Tracking is very similar to DSTC, with the
exception that the cluster heads are pre-defined and clusters do not disband
DSTC Tracking: DSTC is relatively more complex as compared to the pre-
vious two techniques. The DSTC technique can be informally summarized
in the following steps:

1. Sensor nodes wait for sensory input for an approaching target.

2. When a sensor node detects a rising input signal that then falls, and
the peak signal is higher than a cutoff threshold, a Closest Point of
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Figure 5: Information Driven Network Control

Approach (CPA) is declared at the time of the peak.

3. If the Node is not already part of a cluster, it sends out a cluster
formation message to its neighbors, all of whom join the cluster if they
are not already part of a previous cluster.

4. If the node is already part of a cluster, it sends its CPA, including
signal strength, time of detection and the node’s position to its Cluster
Head

5. Once the Cluster Head has received enough CPA’s (3 or more) it es-
timates the position and time of the actual detection as the signal
weighted averages of the received CPA positions and times. The Ve-
locity vector of the target is estimated as the signal weighted linear fit
of the changes in CPA position over the changes in CPA times. This
combined information forms a track point.

6. If the Cluster Head had not previously any such track points from other
Cluster Heads, it originates a Track Message composed of its own track
point. This Track message is then sent out to the sensor nodes along
the target’s estimated path.
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7. If the Cluster Head had previously received any such track points from
other Cluster Heads, they are compared with the local track point to
find the incoming track most likely to be associated with the local point.
If any matches are found, the best one is combined with the local track
point to form a Track Message that is then sent out to the sensor nodes
along the target’s estimated path. If no matches are found, the Cluster
Head proceeds as step 6.

8. Once the Track Message is sent, the Cluster Head disbands the cluster
and informs all the cluster members.

The performance of these tracking algorithms is compared in Table 1 using
the following metrics:

• Track Variance: the variance of the positions of the estimated track
points versus the actual ground truth

• Track Coverage: the percentage of the target’s path through the sensor
field that was tracked

• Broadcast Data: number of bytes that need to be broadcast to dissem-
inate CPA, Clustering and Tracking messages to other nodes

• Broadcast Energy: the amount of energy used to distribute the neces-
sary CPA, Clustering and Tracking messages

These results validate the intuitive observation that CC method suffers from
the drawback of poor energy efficiency. We have restricted our simulations to
single hop communication. The poor energy efficiency can be attributed to
the fact that nodes that are far away from the designated centralized cluster
head node have to use much larger transmission power to communicate their
sensed data to this central node. However, as is to be expected it provides
very good location and velocity estimation performance since the cluster head
receives sensed data from all other sensor nodes . In contrast to CC, the
DSC method uses much less power since the average communication radius
of a static cluster is much smaller than a single large cluster implied in CC.
However, due to the static nature of the clusters, the tracking performance
is rather poor. This is attributable to the fact that if the target follows a
trajectory that is in close proximity to the location of static clusters, only then
individual clusters provide better location and velocity estimates. However,
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Comparison Metrics DSTC (Patient) DSTC (Greedy) Static Central
Track Variance (m2) 1.743 0.431 1.048 0.446
Track Coverage (%) 88.617 90.868 90.863 75.188
Broadcast Data (byte) 1904 2384 2848 1520
Broadcast Energy (mJ) 3.828 5.696 4.897 21.656

Table 1: Tracking Algorithm Comparison Table

if the location of static clusters is far away from the target tracks then the
sensed signal strength is reduced due to increased propagation losses. This
translates to poor signal to noise ratio (SNR), which is the main performance
determining factor. Finally the DSTC method is able to deliver advantages of
both the CC and DSC methods since small clusters are dynamically formed
around the current location of the target. This reduces transmission power
and ensures higher SNR and hence better tracking performance.

5 Conclusions

This research presents issues to be dealt with in the design of energy-efficient
and fusion driven reconfigurable sensor networks used for conducting surveil-
lance in urban areas. Use of compressed sensing in which a sensor node
compresses the raw sensed data using a PFSM sensor data model, leads to sig-
nificant reduction in use of network resources. Using four different simulated
sensor network topologies, viz CC, DSC, DTSC-Greedy and DSTC-Patient,
we show that the working of the proposed sensing technique for tracking a
target moving through a sensor field. These simulation studies show that
DSTC-Patient has the best energy performance without any significant loss
of tracking performance but at the expense of much more complex cluster-
ing protocol than others. We are also in the process modifying the four
afore mentioned clustering to include fusion driven dynamic sensor network
adaptation. We expect to report these in a another paper in the near future.
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